

International Standard

ISO/IEC 8803

Information technology — 3D Printing and scanning — Accuracy and precision evaluation process for modelling from 3D scanned data First edition 2025-10

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2025

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents			Page
For	eword		v
Introduction			vi
1	Scor	oe	1
2	-	native references	
3	3.1	ns, definitions and abbreviated terms Terms and definitions	
	3.1	Abbreviations	
4		uation model	
4	4.1	General	
	1.1	4.1.1 Background	
		4.1.2 Evaluation model	
	4.2	Reference model – evaluation processes	
	4.3	Stakeholders and roles	
		4.3.1 General 4.3.2 Provider	
		4.3.2 Provider 4.3.3 Producer	
		4.3.4 Customer	
		4.3.5 Partner	
		4.3.6 Policymaker	7
	4.4	Quality in the 3D printing	
		4.4.1 Workflow and product quality	8
		4.4.2 Workflow and related stakeholders	
		4.4.3 Modelling task 4.4.4 Printing task	
		4.4.5 Application task	
	4.5	Support for the evaluation	
5	Fval	uation process	10
3	5.1	General requirements	
	5.2	Documentation	
	5.3	Establish the evaluation requirements	
		5.3.1 General	
		5.3.2 Establish the purpose of the evaluation.	
		5.3.3 Define the product quality requirements	
		5.3.5 Define the stringency of the evaluation	
	5.4	Specify the evaluation	
		5.4.1 General	13
		5.4.2 Select quality measures (evaluation modules)	
		5.4.3 Define decision criteria for quality measures	
		5.4.4 Define decision criteria for evaluation	
	5.5	Design the evaluation 5.5.1 General	
		5.5.2 Plan evaluation activities	
	5.6	Execute the evaluation	
		5.6.1 General	
		5.6.2 Make measurements	
		5.6.3 Apply decision criteria for quality measures.	
	5.7	5.6.4 Apply decision criteria for evaluation Conclude the evaluation	
	5.7	5.7.1 General	
		5.7.2 Review the evaluation result	
		5.7.3 Create the evaluation report	18
		5.7.4 Review quality evaluation and provide feedback to the organization	19

5.7.5 Perform disposition of evaluation data	19		
Annex A (informative) Tasks and phases	20		
Annex B (informative) Evaluation report template			
Annex C (informative) Comparison between 3D printing product evaluation process and SQuaRE evaluation process	23		
Bibliography	25		

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see https://www.iso.org/directives or https://www.iec.ch/members_experts/refdocs).

ISO and IEC draw attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO and IEC take no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO and IEC had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents and https://patents.iec.ch. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html and www.iso.org/members.html and www.iso.org/members.html and

Introduction

This document was developed in response to the quality management needs of 3D printing and scanning technology, with the aim of taking full advantage of information and communication technology (ICT) in this context. 3D scanning is the process of scanning a real-world object or environment to collect data on its shape and possibly its style attributes. The main purpose of 3D scanning is for generating high-precision digital 3D models.

A 3D scanner can be based on many different technologies, each with its own purposes and targets, limitations, and advantages. There can be many limitations in each type of target object that will be digitized. For example, optical technology can encounter many difficulties with dark, shiny, reflective, or transparent objects. As a further example, when using computed tomography scanning, structured-light 3D scanners, and Light Detection And Ranging (LiDAR) technology, there is a need to use non-destructive internal scanning technology for generating digital 3D models.

Despite the rapid growth of 3D scanning applications, the accuracy, precision, and reproducibility of generated 3D models from 3D scanned data have not been thoroughly investigated. Inaccuracies can arise due to errors that occur during the imaging, segmentation, modelling, postprocessing, and 3D printing steps. The total accuracy, precision, and reproducibility of 3D printed models is affected by the sum of errors introduced in each step involved in the creation of the models.

For the expansion of 3D printing applications, it is necessary to review and evaluate the various factors in each step of the 3D model printing process that contribute to model inaccuracy, including the intrinsic limitations of each printing technology. Once identified, the initial error should be assessed and corrected, in order to minimize cumulative errors of 3D printing life cycles. In this context, evaluation of the overall process of data processing is critical.

This document proposes a standardized process for evaluating quality enhancement and error minimization in the generation of the 3D model from 3D scanned data. As a general concept, evaluation is the systematic determination of the extent to which an entity meets its specified criteria. The evaluation of product quality is vital to both the acquisition and development of any product. The relative importance of the various characteristics of product quality depends on the intended usage or objectives of the product. Due to the 3D printing process is the composition of various tasks, 3D printing products need to be evaluated in each task to decide whether relevant quality characteristics meet the requirements of the final product.

This document is divided into two main parts:

<u>Clause 4</u>: Evaluation model - This clause describes the underlying principles of evaluation. The use of 3D printing requires specific considerations with regard to some of these principles as described in <u>Clause 5</u>.

<u>Clause 5</u>: Evaluation process - This clause describes the process of evaluation. Evaluation processes involve the systematic application of policies, procedures, and practices to the activities of communicating, establishing the context, assessing, reviewing, and reporting evaluated results.

Information technology — 3D Printing and scanning — Accuracy and precision evaluation process for modelling from 3D scanned data

1 Scope

This document defines a standardized accuracy and precision evaluation process for modelling from 3D scanned data. The set of processes, activities and tasks described in this document provides a common framework for evaluating quality factors such as accuracy and precision for modelling from 3D scanned data.

This document is not intended to evaluate the 3D printed product itself.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 25040, Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Quality evaluation framework

ISO/IEC 25041, Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Evaluation guide for developers, acquirers and independent evaluators

ISO/IEC/IEEE 24765, Systems and software engineering — Vocabulary